
proxi Documentation
Release 1.0

Yasser El-Manzalawy

Jun 21, 2018

Contents

1 Audience 3

2 Citing 5

3 Documentation 7
3.1 Installation . 7

3.1.1 Dependencies . 7
3.1.2 User installation . 7

3.2 ReadMe . 7
3.2.1 Install . 8
3.2.2 Bugs . 8
3.2.3 License . 8

3.3 proxi package . 8
3.3.1 Subpackages . 8

3.3.1.1 proxi.algorithms package . 8
3.3.1.2 proxi.utils package . 13

3.3.2 Module contents . 19
3.4 Tutorials . 19

3.4.1 How to construct a proximity kNN graph? . 19
3.4.1.1 Variables and Parameters settings . 20
3.4.1.2 Load OTU Table and remove useless OTUs . 20
3.4.1.3 Construct an undirected kNN graph . 20
3.4.1.4 Construct a directed kNN graph . 21
3.4.1.5 Limitation of kNN graphs . 21

3.4.2 How to construct a perturbed kNN graph? . 22
3.4.2.1 Variables and Parameters settings . 22
3.4.2.2 Load OTU Table and remove useless OTUs . 22
3.4.2.3 Construct an undirected pkNN graph . 23
3.4.2.4 Construct a weighted and directed pkNN graph . 23

3.4.3 How to construct an aggregated kNN graph? . 24
3.4.3.1 Load OTU Table and remove useless OTUs . 25
3.4.3.2 Method 1 for constructing an undirected aggregated kNN graph 25
3.4.3.3 Method 2 for constructing an undirected aggregated kNN graph 26

3.4.4 Comparative network analysis of perturbed kNN graphs . 27
3.4.4.1 Construct an undirected pkNN graph using IBD OTU table 27
3.4.4.2 Analysis of global topological properties . 28
3.4.4.3 Analysis of top first modules . 29

i

3.4.4.4 Analysis of most varying nodes . 30

4 Indices and tables 33

Python Module Index 35

ii

proxi Documentation, Release 1.0

Proxi is a Python package for proximity graph construction. In proximity graphs, each node is connected by an edge
(directed or undirected) to its nearest neighbors according to some distance metric d.

Proxi provides tools for inferring different types of proximity graphs from an OTU table including:

• k Nearest Neighbor kNN-graphs

• radius Nearest Neighbor rNN-graphs

• Perturbed k Nearest Neighbor pkNN-graphs

In addition, Proxi provides functionality for inferring pairwise graphs using virtually any user-defined proximity metric
as well as support for aggregating graphs.

Contents 1

proxi Documentation, Release 1.0

2 Contents

CHAPTER 1

Audience

The audience for Proxi includes bioinformaticians, mathematicians, physicists, biologists, computer scientists, and
social scientists. Although Proxi was developed with metagenomics data in mind, the tool is applicable to other types
of data including (but not limited to) gene expression, protein-protein interaction, wireless networks, images, etc.

3

proxi Documentation, Release 1.0

4 Chapter 1. Audience

CHAPTER 2

Citing

5

proxi Documentation, Release 1.0

6 Chapter 2. Citing

CHAPTER 3

Documentation

3.1 Installation

3.1.1 Dependencies

Proxi requires:

Python (>= 2.7 or >= 3.3) NumPy (>= 1.8.2) SciPy (>= 0.13.3) NetworkX (>= 2.1) Sklearn (>= 0.19.1)

3.1.2 User installation

If you already have a working installation of the required packages, the easiest way to install proxi is using pip:

$ pip install proxi

To upgrade to a newer release use the --upgrade flag:

$ pip install --upgrade proxi

3.2 ReadMe

Proxi is a Python package for proximity graph construction. In proximity graphs, each node is connected by an edge
(directed or undirected) to its k nearest neighbors according to some distance metric d.

• Website: http://idsrlab.com/proxi/

• Documentation: https://proxi.readthedocs.io/en/latest/index.html

• Tutorials: https://proxi.readthedocs.io/en/latest/Tutorials.html

• Source: https://bitbucket.org/idsrlab/proxi/

7

http://idsrlab.com/proxi/
https://proxi.readthedocs.io/en/latest/index.html
https://proxi.readthedocs.io/en/latest/Tutorials.html
https://bitbucket.org/idsrlab/proxi/

proxi Documentation, Release 1.0

3.2.1 Install

Install the latest version of Proxi:

$ pip install proxi

For additional details, please see ‘INSTALL.rst’.

3.2.2 Bugs

Please report any bugs that you find here.

3.2.3 License

Proxi is released under the 3-Clause BSD license (see ‘LICENSE.txt’). Copyright (C) 2018 Yasser El-Manzalawy
<yasser@idsrlab.com>

3.3 proxi package

3.3.1 Subpackages

3.3.1.1 proxi.algorithms package

Submodules

proxi.algorithms.knng module

Warrper for using sklearng kNN Graph (KNNG) construction method (see http://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.kneighbors_graph.html).

proxi.algorithms.knng.get_knn_graph(data, k, metric=’correlation’, p=2, met-
ric_params=None, OTU_column=None,
is_undirected=True, is_normalize_samples=True,
is_standardize_otus=True)

Compute the (directed/undirected) graph of k-Neighbors for points in the input data. The kNN-graph is con-
structed using sklearn method, sklearn.neighbors.kneighbors_graph.

Parameters

• data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and
each column is a sample

• k (int) – Number of neighbors for each node

• metric (string or callable, default 'correlation') – metric to use for
distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them.

Valid values for metric are:

– from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

8 Chapter 3. Documentation

mailto:yasser@idsrlab.com
mailto:yasser@idsrlab.com
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html

proxi Documentation, Release 1.0

– from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstani-
moto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

– any collable function (e.g., distance functions in proxi.utils.distance module)

p [int, optional, default = 2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance
(l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params [dict, optional, default = None] Additional keyword arguments for the scipy metric function.

OTU_column [string, optional, default = None] Name of the DataFrame column that contains the OTUs IDs
(i.e., nodes IDs). If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

is_undirected [bool, optional, default = True] whether to compute undirected/directed graph. Default is undi-
rected.

is_weighted [bool, optional, default = False] whether to compute weighted graph. Default is unweighted.

is_normalize_samples [bool, optional, default = True] whether to normalize each sample (i.e., column in the
input data).

is_standardize_otus [bool, optional, default = True] whether to standardize each OTU (i.e., row in the input
data)

Returns

• nodes_id (array_like) – list of nodes.

• _A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_knn_graph(df, 5, metric='braycurtis')

>>> # Note that a is a sparse matrix.
>>> # Use 'todense' to convert a into numpy matrix format required for NetworkX
>>> a = a.todense()
>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

proxi.algorithms.pairwise module

Construct a graph using a pairwise similarity metric (e.g. PCC).

3.3. proxi package 9

proxi Documentation, Release 1.0

proxi.algorithms.pairwise.create_graph_using_pairwise_metric(data, similar-
ity_metric,
threshold,
is_symmetric=True,
OTU_column=None,
is_normalize_samples=True,
is_standardize_otus=True,
is_weighted=False)

Construct a graph using a pairwise similarity metric.

Parameters

• data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and
each column is a sample.

• similarity_metric (collable similarity function) – A collable function
for computing the similarity between two vectors.

• threshold (float) – Minimum similarity score between two vectors required for having
an edgle between their corresponding nodes.

• is_symmetric (bool, optional, default=True) – Set this parameter to False
if the similarity function is not symmetric.

• OTU_column (string, optional, default = None) – Name of the DataFrame
column that contains the OTUs IDs (i.e., nodes IDs). If OTU_column is None, the first
column in the dataframe is treated as the OTU_column.

is_normalize_samples [bool, optional, default = True] whether to normalize each sample (i.e., column in the
input data).

is_standardize_otus [bool, optional, default = True] whether to standardize each OTU (i.e., row in the input
data)

is_weighted [bool, optional, default = False] whether to compute weighted graph. Default is unweighted.

Returns

• nodes_IDs (array_like) – list of nodes.

• A (array_like, Shape(N,N)) – Adjacency matrix of the constructed graph.

• W (array_like, Shape(N,N)) – Weight matrics.

Examples

>>> df = pd.read_csv(in_file)
>>> nodes, a, weights = create_graph_using_pairwise_metric(df, similarity_
→˓metric=abs_pcc,
>>> threshold=0.5, is_weighted=True)
>>> # save unweighted graph in graphml format
>>> save_graph(a, nodes, out_file)
>>> # save weighted graph in graphml format
>>> save_weighted_graph(a, nodes, weights, out_file2)

proxi.algorithms.pknng module

Implementation of Perturbed kNN Graph (PKNNG) [1].

10 Chapter 3. Documentation

proxi Documentation, Release 1.0

1- Generate T bootstrapped kNN graphs where at each iteration a new dataset is generated by resampling with replace-
ment from the original dataset.

2- Aggregate the T graphs into a single one by keeping edges that appear in more than cT of the bootstrapped graphs
with the sample weights for those edges.

References

[1] Wagaman, A. (2013). Efficient kNN graph construction for graphs on variables. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 6(5), 443-455.

proxi.algorithms.pknng.get_pknn_graph(data, k, c=0.5, T=100, metric=’correlation’,
p=2, metric_params=None, OTU_column=None,
random_state=0, is_undirected=True,
is_weighted=False, is_normalize_samples=True,
is_standardize_otus=True)

Compute the (directed/undirected) graph of k-Neighbors for points in the input data. Each kNN-graph is con-
structed using sklearn method, sklearn.neighbors.kneighbors_graph.

Parameters

• data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and
each column is a sample.

• k (integer) – Number of neighbors for each node.

• c (float, optional, default=0.5) – Graph aggregation tunning parameter.

• T (integer, optional, default=100) – Number of bootstrap iterations.

• metric (string or callable, default='correlation') – metric to use for
distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them.

Valid values for metric are:

– from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

– from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstani-
moto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

– any collable function (e.g., distance functions in utils.distance module)

p [int, optional, default = 2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance
(l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params [dict, optional, default = None] Additional keyword arguments for the scipy metric function.

OTU_column [string, optional, default = None] Name of the DataFrame column that contains the OTUs IDs
(i.e., nodes IDs). If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

random_state [integer, optional, default=0] #TODO

is_undirected [bool, optional, default = True] whether to compute undirected/directed graph. Default is undi-
rected.

3.3. proxi package 11

proxi Documentation, Release 1.0

is_weighted [bool, optional, default = False] whether to compute weighted graph. Default is unweighted.

is_normalize_samples [bool, optional, default = True] whether to normalize each sample (i.e., column in the
input data).

is_standardize_otus [bool, optional, default = True] whether to standardize each OTU (i.e., row in the input
data)

Returns

• nodes_id (array_like) – list of nodes.

• _A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_pknn_graph(df, 5, metric='braycurtis', T=10, c=0.5, is_
→˓weighted=True,
>>> OTU_column='SID')

>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

>>> # save the directed graph in graphml format
>>> save_graph(a, nodes, out_file2, create_using=nx.DiGraph())

References

proxi.algorithms.rng module

Computes a (weighted) graph of Neighbors for each data point. Neighborhoods are restricted to the points at a distance
lower than radius. This is simply a warrper for using sklearng radius_neighbors_graph method.

proxi.algorithms.rng.get_rn_graph(data, radius, metric=’braycurtis’, p=2,
metric_params=None, OTU_column=None,
is_undirected=True, is_normalize_samples=True,
is_standardize_otus=True)

Computes the (weighted/directed) graph of k-Neighbors for points in data

Parameters

• data (DataFrame) – input data as pandas DataFrame object. Each row is an OTU and
each column is a sample

• radius (float) – Radius of neighborhoods.

• metric – The distance metric used to calculate the neighbors within a given radius for
each sample point. The DistanceMetric class gives a list of available metrics. The default
distance is correlation.

12 Chapter 3. Documentation

proxi Documentation, Release 1.0

p [int, optional, default = 2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance
(l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params [dict, optional, default = None] Additional keyword arguments for the scipy metric function.

OTU_column [string, optional, default = None] Name of the DataFrame column that contains the OTUs IDs
(i.e., nodes IDs). If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

is_undirected [bool, optional, default = True] whether to compute undirected/directed graph. Default is undi-
rected.

is_weighted [bool, optional, default = False] whether to compute weighted graph. Default is unweighted.

is_normalize_samples [bool, optional, default = True] whether to normalize each sample (i.e., column in the
input data).

is_standardize_otus [bool, optional, default = True] whether to standardize each OTU (i.e., row in the input
data)

Returns

• nodes_id (array_like) – list of nodes.

• _A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_rn_graph(df, 0.3, metric='braycurtis')

>>> # Note that a is a sparse matrix.
>>> # Use 'todense' to convert a into numpy matrix format required for NetworkX
>>> a = a.todense()
>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

Module contents

3.3.1.2 proxi.utils package

Submodules

proxi.utils.distance module

Distance functions for proxi project.

proxi.utils.distance.abs_correlation(x, y)
Compute absolute correlation distance between two vectors.

Parameters

3.3. proxi package 13

proxi Documentation, Release 1.0

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1-|pcc(x,y)|

proxi.utils.distance.abs_kendall(x, y)
Compute absolute Kendall correlation (tau) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1-|tau(x,y)|

proxi.utils.distance.abs_spearmann(x, y)
Compute absolute spearmann correlation (spc) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1-|spc(x,y)|

proxi.utils.distance.neg_correlation(x, y)
Compute negative correlation distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1 if pcc is positive. Otherwise, the distance is 1+pcc(x,y)

proxi.utils.distance.neg_kendall(x, y)
Compute negative Kendall correlation (tau) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1 if tau is positive. Otherwise, the distance is 1+tau(x,y)

proxi.utils.distance.neg_spearmann(x, y)
Compute negative spearmann correlation (spc) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

14 Chapter 3. Documentation

proxi Documentation, Release 1.0

Return type 1 if spc is positive. Otherwise, the distance is 1+spc(x,y)

proxi.utils.distance.pos_correlation(x, y)
Compute positive correlation distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1 if pcc is negative. Otherwise, the distance is 1-pcc(x,y)

proxi.utils.distance.pos_kendall(x, y)
Compute positive Kendall correlation (tau) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1 if tau is negative. Otherwise, the distance is 1-spc(x,y)

proxi.utils.distance.pos_spearmann(x, y)
Compute positive spearmann correlation (spc) distance between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type 1 if spc is negative. Otherwise, the distance is 1-spc(x,y)

proxi.utils.misc module

Miscellaneous Python methods for proxi project.

proxi.utils.misc.aggregate_graphs(G, min_num_edges, is_weighted=False)
Aggregate the adjaceny matrices of graphs defined over the same set of nodes.

Parameters

• G (list of array_like matrices of shape (N,N)) – list of adjacency ma-
trices.

• min_num_edges (int) – min number of edges between two nodes required to keep an
edge between them in the aggregated graph.

• is_weighted (bool, optional, default = False) – whether to conmpute a
weighted aggregated graph.

Returns

• rVal (agregated graph)

• W (edge weights (None if is_weighted is False))

3.3. proxi package 15

proxi Documentation, Release 1.0

proxi.utils.misc.filter_edges_by_votes(A, G, min_num_votes)
Aggregate the adjaceny matrices of a list of graphs G and use the aggregated graph to decide which edges in the
base graph A to keep. All graphs are assumed to be defined over the same set of nodes.

Parameters

• A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

• G (list of array_like matrices of shape (N,N)) – list of adjacency ma-
trices.

• min_num_votes (int) – minimum number of edges between two nodes in the aggre-
gated graph required to keep their edge (if exist) in the base graph.

Returns

• rVal (array_like, shape(N,N)) – adjaceny matrix of the filtered base graph.

• W (array_like, shape(N,N)) – edge wesights associated with rVal graph

proxi.utils.misc.save_graph(A, nodes_id, out_file, create_using=None)
Save the graph in graphml format.

Parameters

• A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

• nodes_id (array-like, shape(N,)) – list of modes id

• out_file (file or string) – File or filename to write. Filenames ending in .gz or
.bz2 will be compressed.

• create_using (Networkx Graph object, optional, default is
Graph) – User specified Networkx Graph type. Accepted types are: Undirected Simple
Graph

Directed Simple DiGraph With Self-loops Graph, DiGraph With Parallel edges Multi-
Graph, MultiDiGraph

Notes

This implementation, based on networkx write_graphml method, does not support mixed graphs (directed and
unidirected edges together) hyperedges, nested graphs, or ports.

proxi.utils.misc.summarize_graph(G)
Report basic summary statistics of a networkx graph object.

Parameters G (graph) – A networkx graph object

Returns

Return type A dictionary of basic graph properties.

proxi.utils.misc.jaccard_graph_similarity(G1, G2)
Compute Jaccard similarity between two graphs over the same set of nodes.

Parameters

• G1 (graph) – A networkx graph object.

• G2 (graph) – A networkx graph pbject.

• Returns –

• -------s –

16 Chapter 3. Documentation

proxi Documentation, Release 1.0

• Jaccard similarity between two graphs over the same set of
nodes. (Compute) –

proxi.utils.misc.get_graph_object(A, nodes_id=None)
Construct a networkx graph object given an adjaceny matrix and nodes IDs.

Parameters A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

nodes_id [array-like, shape(N,)] list of modes id

Returns

Return type A networkx graph object.

proxi.utils.misc.get_collable_name(func)
Return the name of a collable function.

Parameters func (collable function) –

Returns

Return type The name of a collable function.

Notes

str(func) returns <function neg_correlation at 0x1085cdd08>.

proxi.utils.process module

Pre-processing methods for proxi project.

proxi.utils.process.filter_OTUs_by_name(data, OTUs_to_keep, OTUs_column)
Keeps only the OTUs in OTUs_to_keep list.

Parameters

• data (DataFrame) – Input data as a pandas DataFrame object. Each row is an OTU and
each column is a sample

• OTUs_to_keep (list) – List of OTUs ID to select from the input dataframe.

• OTU_column (string) – Name of the DataFrame column that contains the OTUs IDs
(i.e., nodes IDs).

Returns

Return type A dataframe derived from the input data by keeping only rows with specified OTUs
IDs.

proxi.utils.process.get_MAD(x)
MAD is defined as the median of the absolute deviations from the data’s median:

Parameters x (array_like, Shape(N,)) – Input 1-D array.

Returns

Return type The median of the absolute deviations (MAD) of x.

proxi.utils.process.get_non_zero_percentage(x)
The fraction of non-zero values in a 1-D array x.

3.3. proxi package 17

proxi Documentation, Release 1.0

Parameters x (array_like, Shape(N,)) – Input 1-D array.

Returns

Return type The percentage of non-zero elements in x.

proxi.utils.process.get_variance(x)
Compute the variance of an input vector x. Variance is the average of the squared deviations from the meanvar
= mean(abs(x - x.mean())**2)

Parameters x (array_like, Shape(N,)) – Input 1-D array.

Returns

Return type The variance of x.

proxi.utils.process.select_top_OTUs(data, score_function, threshold, OTUs_column)
Filter OTUs using a scoring function and return top k OTUs or OTUs with scores greater than a threshold score.

Parameters

• data (DataFrame) – Input data as a pandas DataFrame object. Each row is an OTU and
each column is a sample

• score_function (collable function) – Unsupervised scoring function (e.g.,
variance or percentage of non-zeros) of each OTU.

• threshold (float) – if threshold > 1, return top threshold OTUs. Otherwise, return
OTUs with score > threshold.

• OTU_column (string) – Name of the DataFrame column that contains the OTUs IDs
(i.e., nodes IDs).

Returns

Return type dataframe with selected OTUs

proxi.utils.similarity module

Similarity functions for proxi project.

proxi.utils.similarity.abs_Kendall(x, y)
Compute absolute Kendall correlation similarity between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type |kendalltau(x,y)|

proxi.utils.similarity.abs_pcc(x, y)
Compute absolute Pearson correlation similarity between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type |pcc(x,y)|

18 Chapter 3. Documentation

proxi Documentation, Release 1.0

proxi.utils.similarity.abs_spc(x, y)
Compute absolute Spearman correlation similarity between two vectors.

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

Returns

Return type |spearmanr(x,y)|

proxi.utils.similarity.distance_to_similarity(x, y, dist_func)
Convert the distance functions in scipy.spatial.distance into similarity functions

Parameters

• x (array_like, Shape(N,)) – First input vector.

• y (array_like, Shape(N,)) – Second input vector.

• dist_func (collable) – collabel distance function (e.g., any distance function in
scipy.spatial.distance)

Returns

Return type similarity between x and y.

Module contents

3.3.2 Module contents

3.4 Tutorials

Example simple uses and applications of Proxi are provided in the following tutorials

3.4.1 How to construct a proximity kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we show how to construct undirected and directed kNN graphs from an Operational Taxonomic Unit
(OUT) table.

An OTU Table is a form of the results that you will get from a metagenomics taxonomy classification pipeline. In that
table, we are giving (for each sample) the number of sequences in each OTU and the taxonomy of that OTU. Samples
correspond to columns and OTUs correspond to rows. OTUs taxonomy is the first column (by default) but it could be
any column.

In [1]: import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.knng import get_knn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

3.4. Tutorials 19

mailto:yasser@idsrlab.com

proxi Documentation, Release 1.0

import warnings
warnings.filterwarnings("ignore")

3.4.1.1 Variables and Parameters settings

In [2]: # Input OTU Table
healthy_file = './data/L6_healthy_train.txt'

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train.graphml'
healthy_directed_graph_file = './graphs/L6_healthy_train_directed.graphml'

Parameters
num_neighbors = 5 # number of nearest neighbors in the kNN graph
dist = abs_correlation # distance function

3.4.1.2 Load OTU Table and remove useless OTUs

In [3]: # Load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

Delete OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

3.4.1.3 Construct an undirected kNN graph

In [4]: # Construct kNN-graph
nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)

Save the constructed graph in an edge list format
save_graph(a.todense(), nodes, healthy_graph_file)

Like other graph inference tools, proxi doesn’t support any network visualization functionality. Here, we used
Cytoscape to open our graphml file and change the network layout to ‘Radial layout’ (see Figure 1). Moreover,
Cytoscape has many tools and plugins that could be used for downstream analyses of our constructed networks.

20 Chapter 3. Documentation

proxi Documentation, Release 1.0

! Figure 1: kNN undirected proximity graph constructed from
healthy OTU table using k = 5.

3.4.1.4 Construct a directed kNN graph

In [5]: # construct directed kNN-graph
nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist, is_undirected=False)

save the constructed graph in an edge list format
save_graph(a.todense(), nodes, healthy_directed_graph_file, create_using=nx.DiGraph())

Now, let’s visualize the constructed directed network using Cytoscape.
Figure 2: kNN directed proximity graph constructed from healthy OTU table using k = 5.

3.4.1.5 Limitation of kNN graphs

A major limitation of the constructed kNN graphs in Figures 1 and 2 is that the constructed graphs might not be sparse.
This limitation could be addressed using different approaches including:

3.4. Tutorials 21

proxi Documentation, Release 1.0

 Using smaller k.
 Using Perturbed kNN Graphs (see Tutorial 2).
 Using aggregated graphs constructed using different distance functions (see
→˓Tutorial 3).

3.4.2 How to construct a perturbed kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we show how to construct directed/undirected perturbed kNN graphs [1]. This algorithm simply uses
bootstrapping to perturb the graph (i.e., obtain several boostrapped graphs and aggregate them). An important property
of the resulting perturbed kNN graphs is that it may not have the same k for every vertex.

References: [1] Wagaman, A. (2013). Efficient kNN graph construction for graphs on variables. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 6(5), 443-455.

In [1]: import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.pknng import get_pknn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

import warnings
warnings.filterwarnings("ignore")

3.4.2.1 Variables and Parameters settings

In [2]: # Input OTU Table
healthy_file = './data/L6_healthy_train.txt'

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train_pknng.graphml' # Output file for pkNN graph
Output file for weighted and directed pkNN graph
healthy_weighted_directed_graph_file = './graphs/L6_healthy_train_weighted_directed_pknng.graphml'

Parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dist = abs_correlation # distance function
T=100 # No of iterations
c=0.6 # control parameter for pknng algorithm

3.4.2.2 Load OTU Table and remove useless OTUs

In [3]: # load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')
IDs = df['OTU_ID'].values

22 Chapter 3. Documentation

mailto:yasser@idsrlab.com

proxi Documentation, Release 1.0

3.4.2.3 Construct an undirected pkNN graph

In [4]: # construct kNN-graph
nodes, a,_ = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c)

save the constructed graph in an edge list format
save_graph(a, nodes, healthy_graph_file)

Shape of original data is (161, 200)

Now, you can use Cytocscape to visualize (and analyze) the constructed graph (See Fig. 1).

Figure 1: Perturbed kNN undirected proximity graph con-
structed from healthy OTU table using k=5, T=100, and c=0.6.

3.4.2.4 Construct a weighted and directed pkNN graph

In [5]: # construct directed kNN-graph
nodes, a, weights = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c, is_undirected=False, is_weighted=True)

save the constructed graph in an edge list format
save_weighted_graph(a, nodes, weights, healthy_weighted_directed_graph_file)

Shape of original data is (161, 200)

3.4. Tutorials 23

proxi Documentation, Release 1.0

Now, use Cytoscape to visualize the graph (See Fig. 2).
Figure 2: Perturbed kNN weighted and directed proximity graph constructed from healthy OTU table using k=5,
T=100, and c=0.6.

3.4.3 How to construct an aggregated kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In tutorial 1, we showed how to construct a kNN graph. To construct such graphs, you need to decide on k (number
of neighbors) and d (the dissimilarity metric). Selecting a dissimilarity metric is not trivial and should be taken into
account when interpreting the resulting kNN graph. Proxi allows the following distance functions to be used:

- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']

- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
'sqeuclidean', 'yule']

- any callable function (e.g., distance functions in proxi.utils.distance module)

Moreover, Proxi supports any user-defined callable function. For example, a user might define a new function that
is the average or weighted combination of some of the functions listed above. Finally, Proxi aggregate_graphs and
filter_edges_by_votes methods allow user to construct different kNN graphs using different distance functions and/or
ks. In what follows, we show how to aggregate three graphs constructed using k=5 and three different distance
functions.

In [1]: import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.knng import get_knn_graph
from proxi.utils.misc import save_graph, save_weighted_graph, aggregate_graphs, filter_edges_by_votes
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation, abs_spearmann, abs_kendall

import warnings
warnings.filterwarnings("ignore")

24 Chapter 3. Documentation

mailto:yasser@idsrlab.com

proxi Documentation, Release 1.0

In [2]: # Input file(s)
healthy_file = './data/L6_healthy_train.txt' # OTU table

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train_aknng.graphml' # Output file for aggregated pkNN graphs

Graph aggregation parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dists = [abs_correlation, abs_spearmann, abs_kendall] # distance functions
min = 2 # minimum number of edges needed to have an edge in the aggregated graph

3.4.3.1 Load OTU Table and remove useless OTUs

In [3]: # Load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

Proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

3.4.3.2 Method 1 for constructing an undirected aggregated kNN graph

In [4]: graphs = []
Construct kNN-graphs using different distance fucntions
for dist in dists:

nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)
graphs.append(a.todense())

aggregated_graph,_ = aggregate_graphs(graphs, min)

Save the constructed graph in an edge list format
save_graph(aggregated_graph, nodes, healthy_graph_file)

Now, we can visualize the graph using Cytoscape (See Fig. 1) Fig-
ure 1: Aggregated kNN graph obtained by aggregating three kNN graphs consutucted using three distance functions,
abs_correlation, abs_spearmann, and abs_kendall.

An interesting property of the aggregated graph in Fig. 1 is that each edge is supported by at least 2 distance functions.
Alternatively, one can aggregate the three graphs such that each edge is supported by one fixed base distance function

3.4. Tutorials 25

proxi Documentation, Release 1.0

(e.g., abs_correlation) plus at least one of the remaining two functions. Therefore, each edge in the resulting aggregated
graph (Fig. 2) is supported by at least two functions such that one of them is abs_correlation.

3.4.3.3 Method 2 for constructing an undirected aggregated kNN graph

In [5]: # Specify input/output files and parameters

Output file
healthy_graph_file2 = './graphs/L6_healthy_aknng2.graphml' # Output file for aggregated pkNN graphs

Graph aggregation parameters
base_distance = abs_correlation
dists = [abs_spearmann, abs_kendall] # distance functions
min_votes = 1

In [6]: graphs = []
Construct kNN-graphs using different distance fucntions
for dist in dists:

nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)
graphs.append(a.todense())

nodes, a = get_knn_graph(df, k=num_neighbors, metric=base_distance)
aggregated_graph,_ = filter_edges_by_votes(a.todense(), graphs, min)

Save the constructed graph in an edge list format
save_graph(aggregated_graph, nodes, healthy_graph_file2)

Figure 2: Sparse base kNN graph (using abs_correlation)
and remaining two graphs are used for filtering out unsupported edges.

It worths to mention that these two methods of aggregating graphs could also be applied to aggregate the following
graphs:

 kNN graphs constructed with different <i>k</i> values
 radius graphs rNN graphs with different <i>radius</i> values</i>

(continues on next page)

26 Chapter 3. Documentation

proxi Documentation, Release 1.0

(continued from previous page)

 different perturbed kNN graphs obtained using different T, c, k, or distance
→˓parameters

3.4.4 Comparative network analysis of perturbed kNN graphs

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we construct two perturbed kNN graph for IBD and healthy controls (respectively) and then present ex-
amples of possible comparative network analysis that could be apply to the two graphs using Cytoscape. In particular,
we compare the two graphs using: - Their global topological properties obtained using Cytoscape NetworkAnalyzer
tool - Their top modules obtained using MCODE plugins - Their most varying nodes using DyNet Analyzer plugins
and we report the subnetwork of top most varying 20 nodes (potential IBD biomarkers)

In [1]: import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.pknng import get_pknn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

import warnings
warnings.filterwarnings("ignore")

3.4.4.1 Construct an undirected pkNN graph using IBD OTU table

In [2]: # Input file(s)
ibd_file = './data/L6_IBD_train.txt' # OTU table

Ouput file(s)
ibd_graph_file = './graphs/L6_IBD_train_pknng.graphml' # Output file for pkNN graph

Parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dist = abs_correlation # distance function
T=100 # No of iterations
c=0.6 # control parameter for pknng algorithm

In [3]: # Load OTU Table
df = pd.read_csv(ibd_file, sep='\t')

Proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

Construct kNN-graph
nodes, a,_ = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c)

Save the constructed graph in an edge list format
save_graph(a, nodes, ibd_graph_file)

Shape of original data is (178, 200)

Fig. 1 shows the constructed perturbed kNN graph from IBD samples.

3.4. Tutorials 27

mailto:yasser@idsrlab.com

proxi Documentation, Release 1.0

Figure 1: Perturbed kNN undirected proximity
graph constructed from IBD OTU table using k=5, T=100, and c=0.6.

Fig. 2 shows the constructed perturbed kNN graph from healthy control samples. Note that we don’t need to construct

this network since it has been generated in tutorial 2.
Figure 2: Perturbed kNN undirected proximity graph constructed from healthy OTU table using k=5, T=100, and
c=0.6 (See Example_2).

Now, we can use cytoscape and some of its plugins to compare the two graphs in Figures 1 and 2.

3.4.4.2 Analysis of global topological properties

First, we used Cytoscape NetworkAnalyzer tool (1) to get several global properties of each network. Fig. 3 shows that
IBD network has higher average node degree, clustering coefficient, network centralization, and number of nodes.

28 Chapter 3. Documentation

proxi Documentation, Release 1.0

Figure 3: Global network properties for healthy (top)
and IBD (bottom) networks.

3.4.4.3 Analysis of top first modules

Second, we used MCODE (2) to extract top modules from each network. Fig. 4 compare the top first module from
healthy (top) and IBD (bottom) networks. For healthy network, the top module includes interactions between 4 dif-
ferent genera of Firmicutes and 2 different genera of Actionbacteria. For IBD network, the top module includes
interactions among different genara belonging to Actionbacteria, Proteobacteria, Firmicutes, and Bacteriodetes phy-
lum.

Figure 4: Top module extracted from
healthy (top) and IBD (bottom) networks.

3.4. Tutorials 29

proxi Documentation, Release 1.0

3.4.4.4 Analysis of most varying nodes

Third, we used DyNet Analyzer (3) to compare the the networks in healthy and IBD states. The results are visualized
in Fig. 5 where: green edges represent edges present only in healthy network; red edges represent edges present only
in IBD network; and gray edges represent edges present in both networks. DyNet also associates a rewiring score with
each node that quantifies the amount of change in the identity of the node interacting neighbors. We then ranked nodes
by their DyNet score and generated a subnetwork of the top 20 nodes (See Fig. 6). Interestingly, 13 out of 20 nodes
form a single connected module. In this module, two nodes corresponding to corynebacterium genera and Rhodocy-

claceae family have the highest node degrees of 5 and 4 (respectively).
Figure 5: DynNet Analyzer. Healthy (green) and IBD (red).

Figure 6: Subnetwork of top 20 varying
nodes determined using DyNet score.

References:

[1] Assenov, Yassen, et al. “Computing topological parameters of biological networks.” Bioinformatics 24.2 (2007):
282-284.

[2] Bader, Gary D., and Christopher WV Hogue. “An automated method for finding molecular complexes in large
protein interaction networks.” BMC bioinformatics 4.1 (2003): 2.

[3] Goenawan, Ivan H., Kenneth Bryan, and David J. Lynn. “DyNet: visualization and analysis of dynamic molecular

30 Chapter 3. Documentation

proxi Documentation, Release 1.0

interaction networks.” Bioinformatics 32.17 (2016): 2713-2715.

3.4. Tutorials 31

proxi Documentation, Release 1.0

32 Chapter 3. Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

33

proxi Documentation, Release 1.0

34 Chapter 4. Indices and tables

Python Module Index

p
proxi, 19
proxi.algorithms, 13
proxi.algorithms.knng, 8
proxi.algorithms.pairwise, 9
proxi.algorithms.pknng, 10
proxi.algorithms.rng, 12
proxi.utils, 19
proxi.utils.distance, 13
proxi.utils.misc, 15
proxi.utils.process, 17
proxi.utils.similarity, 18

35

proxi Documentation, Release 1.0

36 Python Module Index

Index

A
abs_correlation() (in module proxi.utils.distance), 13
abs_kendall() (in module proxi.utils.distance), 14
abs_Kendall() (in module proxi.utils.similarity), 18
abs_pcc() (in module proxi.utils.similarity), 18
abs_spc() (in module proxi.utils.similarity), 18
abs_spearmann() (in module proxi.utils.distance), 14
aggregate_graphs() (in module proxi.utils.misc), 15

C
create_graph_using_pairwise_metric() (in module

proxi.algorithms.pairwise), 9

D
distance_to_similarity() (in module proxi.utils.similarity),

19

F
filter_edges_by_votes() (in module proxi.utils.misc), 15
filter_OTUs_by_name() (in module proxi.utils.process),

17

G
get_collable_name() (in module proxi.utils.misc), 17
get_graph_object() (in module proxi.utils.misc), 17
get_knn_graph() (in module proxi.algorithms.knng), 8
get_MAD() (in module proxi.utils.process), 17
get_non_zero_percentage() (in module

proxi.utils.process), 17
get_pknn_graph() (in module proxi.algorithms.pknng),

11
get_rn_graph() (in module proxi.algorithms.rng), 12
get_variance() (in module proxi.utils.process), 18

J
jaccard_graph_similarity() (in module proxi.utils.misc),

16

N
neg_correlation() (in module proxi.utils.distance), 14

neg_kendall() (in module proxi.utils.distance), 14
neg_spearmann() (in module proxi.utils.distance), 14

P
pos_correlation() (in module proxi.utils.distance), 15
pos_kendall() (in module proxi.utils.distance), 15
pos_spearmann() (in module proxi.utils.distance), 15
proxi (module), 19
proxi.algorithms (module), 13
proxi.algorithms.knng (module), 8
proxi.algorithms.pairwise (module), 9
proxi.algorithms.pknng (module), 10
proxi.algorithms.rng (module), 12
proxi.utils (module), 19
proxi.utils.distance (module), 13
proxi.utils.misc (module), 15
proxi.utils.process (module), 17
proxi.utils.similarity (module), 18

S
save_graph() (in module proxi.utils.misc), 16
select_top_OTUs() (in module proxi.utils.process), 18
summarize_graph() (in module proxi.utils.misc), 16

37

	Audience
	Citing
	Documentation
	Installation
	Dependencies
	User installation

	ReadMe
	Install
	Bugs
	License

	proxi package
	Subpackages
	proxi.algorithms package
	proxi.utils package

	Module contents

	Tutorials
	How to construct a proximity kNN graph?
	Variables and Parameters settings
	Load OTU Table and remove useless OTUs
	Construct an undirected kNN graph
	Construct a directed kNN graph
	Limitation of kNN graphs

	How to construct a perturbed kNN graph?
	Variables and Parameters settings
	Load OTU Table and remove useless OTUs
	Construct an undirected pkNN graph
	Construct a weighted and directed pkNN graph

	How to construct an aggregated kNN graph?
	Load OTU Table and remove useless OTUs
	Method 1 for constructing an undirected aggregated kNN graph
	Method 2 for constructing an undirected aggregated kNN graph

	Comparative network analysis of perturbed kNN graphs
	Construct an undirected pkNN graph using IBD OTU table
	Analysis of global topological properties
	Analysis of top first modules
	Analysis of most varying nodes

	Indices and tables
	Python Module Index

