

Overview

Proxi is a Python package for proximity graph construction. In proximity graphs, each node is connected by an
edge (directed or undirected) to its nearest neighbors according to some distance metric d.

Proxi provides tools for inferring different types of proximity graphs from an OTU table including:

	k Nearest Neighbor kNN-graphs

	radius Nearest Neighbor rNN-graphs

	Perturbed k Nearest Neighbor pkNN-graphs

In addition, Proxi provides functionality for inferring pairwise graphs using virtually any user-defined proximity metric as well as support for aggregating graphs.

Audience

The audience for Proxi includes bioinformaticians, mathematicians, physicists, biologists,
computer scientists, and social scientists. Although Proxi was developed with metagenomics data in mind,
the tool is applicable to other types of data including (but not limited to) gene expression, protein-protein interaction,
wireless networks, images, etc.

Citing

Documentation

	Release

	

	Date

	Jun 21, 2018

	Installation
	Dependencies

	User installation

	ReadMe
	Install

	Bugs

	License

	proxi package
	Subpackages
	proxi.algorithms package
	Submodules

	proxi.algorithms.knng module

	proxi.algorithms.pairwise module

	proxi.algorithms.pknng module

	proxi.algorithms.rng module

	Module contents

	proxi.utils package
	Submodules

	proxi.utils.distance module

	proxi.utils.misc module

	proxi.utils.process module

	proxi.utils.similarity module

	Module contents

	Module contents

	Tutorials
	How to construct a proximity kNN graph?
	Variables and Parameters settings

	Load OTU Table and remove useless OTUs

	Construct an undirected kNN graph

	Construct a directed kNN graph

	Limitation of kNN graphs

	How to construct a perturbed kNN graph?
	Variables and Parameters settings

	Load OTU Table and remove useless OTUs

	Construct an undirected pkNN graph

	Construct a weighted and directed pkNN graph

	How to construct an aggregated kNN graph?
	Load OTU Table and remove useless OTUs

	Method 1 for constructing an undirected aggregated kNN graph

	Method 2 for constructing an undirected aggregated kNN graph

	Comparative network analysis of perturbed kNN graphs
	Construct an undirected pkNN graph using IBD OTU table

	Analysis of global topological properties

	Analysis of top first modules

	Analysis of most varying nodes

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

Proxi requires:

Python (>= 2.7 or >= 3.3)
NumPy (>= 1.8.2)
SciPy (>= 0.13.3)
NetworkX (>= 2.1)
Sklearn (>= 0.19.1)

User installation

If you already have a working installation of the required packages, the easiest way to install proxi is using pip:

$ pip install proxi

To upgrade to a newer release use the --upgrade flag:

$ pip install --upgrade proxi

ReadMe

Proxi is a Python package for proximity graph construction. In proximity graphs, each node is connected by an
edge (directed or undirected) to its k nearest neighbors according to some distance metric d.

	Website: http://idsrlab.com/proxi/

	Documentation: https://proxi.readthedocs.io/en/latest/index.html

	Tutorials: https://proxi.readthedocs.io/en/latest/Tutorials.html

	Source: https://bitbucket.org/idsrlab/proxi/

Install

Install the latest version of Proxi:

$ pip install proxi

For additional details, please see ‘INSTALL.rst’.

Bugs

Please report any bugs that you find here.

License

Proxi is released under the 3-Clause BSD license (see ‘LICENSE.txt’).
Copyright (C) 2018 Yasser El-Manzalawy <yasser@idsrlab.com>

proxi package

Subpackages

	proxi.algorithms package
	Submodules

	proxi.algorithms.knng module

	proxi.algorithms.pairwise module

	proxi.algorithms.pknng module

	proxi.algorithms.rng module

	Module contents

	proxi.utils package
	Submodules

	proxi.utils.distance module

	proxi.utils.misc module

	proxi.utils.process module

	proxi.utils.similarity module

	Module contents

Module contents

proxi.algorithms package

Submodules

proxi.algorithms.knng module

Warrper for using sklearng kNN Graph (KNNG) construction method (see http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html).

	
proxi.algorithms.knng.get_knn_graph(data, k, metric='correlation', p=2, metric_params=None, OTU_column=None, is_undirected=True, is_normalize_samples=True, is_standardize_otus=True)

	Compute the (directed/undirected) graph of k-Neighbors for points in the input data.
The kNN-graph is constructed using sklearn method, sklearn.neighbors.kneighbors_graph.

	Parameters

	
	data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and each column is a sample

	k (int) – Number of neighbors for each node

	metric (string or callable, default 'correlation') – metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them.

Valid values for metric are:

	from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’,
‘manhattan’]

	from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’,
‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’,
‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’,
‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these
metrics.

	any collable function (e.g., distance functions in proxi.utils.distance module)

	pint, optional, default = 2

	Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

	metric_paramsdict, optional, default = None

	Additional keyword arguments for the scipy metric function.

	OTU_columnstring, optional, default = None

	Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).
If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

	is_undirectedbool, optional, default = True

	whether to compute undirected/directed graph. Default is undirected.

	is_weightedbool, optional, default = False

	whether to compute weighted graph. Default is unweighted.

	is_normalize_samplesbool, optional, default = True

	whether to normalize each sample (i.e., column in the input data).

	is_standardize_otusbool, optional, default = True

	whether to standardize each OTU (i.e., row in the input data)

	Returns

	
	nodes_id (array_like) – list of nodes.

	_A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_knn_graph(df, 5, metric='braycurtis')

>>> # Note that a is a sparse matrix.
>>> # Use 'todense' to convert a into numpy matrix format required for NetworkX
>>> a = a.todense()
>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

proxi.algorithms.pairwise module

Construct a graph using a pairwise similarity metric (e.g. PCC).

	
proxi.algorithms.pairwise.create_graph_using_pairwise_metric(data, similarity_metric, threshold, is_symmetric=True, OTU_column=None, is_normalize_samples=True, is_standardize_otus=True, is_weighted=False)

	Construct a graph using a pairwise similarity metric.

	Parameters

	
	data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and each column is a sample.

	similarity_metric (collable similarity function) – A collable function for computing the similarity between two vectors.

	threshold (float) – Minimum similarity score between two vectors required for having an edgle between their corresponding nodes.

	is_symmetric (bool, optional, default=True) – Set this parameter to False if the similarity function is not symmetric.

	OTU_column (string, optional, default = None) – Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).
If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

	is_normalize_samplesbool, optional, default = True

	whether to normalize each sample (i.e., column in the input data).

	is_standardize_otusbool, optional, default = True

	whether to standardize each OTU (i.e., row in the input data)

	is_weightedbool, optional, default = False

	whether to compute weighted graph. Default is unweighted.

	Returns

	
	nodes_IDs (array_like) – list of nodes.

	A (array_like, Shape(N,N)) – Adjacency matrix of the constructed graph.

	W (array_like, Shape(N,N)) – Weight matrics.

Examples

>>> df = pd.read_csv(in_file)
>>> nodes, a, weights = create_graph_using_pairwise_metric(df, similarity_metric=abs_pcc,
>>> threshold=0.5, is_weighted=True)
>>> # save unweighted graph in graphml format
>>> save_graph(a, nodes, out_file)
>>> # save weighted graph in graphml format
>>> save_weighted_graph(a, nodes, weights, out_file2)

proxi.algorithms.pknng module

Implementation of Perturbed kNN Graph (PKNNG) [1].

1- Generate T bootstrapped kNN graphs where at each iteration a new dataset is generated by resampling with replacement from the original dataset.

2- Aggregate the T graphs into a single one by keeping edges that appear in more than cT of the bootstrapped graphs with the sample weights for those edges.

References

[1] Wagaman, A. (2013). Efficient k‐NN graph construction for graphs on variables. Statistical Analysis and Data Mining: The ASA Data Science Journal, 6(5), 443-455.

	
proxi.algorithms.pknng.get_pknn_graph(data, k, c=0.5, T=100, metric='correlation', p=2, metric_params=None, OTU_column=None, random_state=0, is_undirected=True, is_weighted=False, is_normalize_samples=True, is_standardize_otus=True)

	Compute the (directed/undirected) graph of k-Neighbors for points in the input data.
Each kNN-graph is constructed using sklearn method, sklearn.neighbors.kneighbors_graph.

	Parameters

	
	data (DataFrame) – Input data as pandas DataFrame object. Each row is an OTU and each column is a sample.

	k (integer) – Number of neighbors for each node.

	c (float, optional, default=0.5) – Graph aggregation tunning parameter.

	T (integer, optional, default=100) – Number of bootstrap iterations.

	metric (string or callable, default='correlation') – metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them.

Valid values for metric are:

	from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’,
‘manhattan’]

	from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’,
‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’,
‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’,
‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’,
‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these
metrics.

	any collable function (e.g., distance functions in utils.distance module)

	pint, optional, default = 2

	Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

	metric_paramsdict, optional, default = None

	Additional keyword arguments for the scipy metric function.

	OTU_columnstring, optional, default = None

	Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).
If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

	random_stateinteger, optional, default=0

	#TODO

	is_undirectedbool, optional, default = True

	whether to compute undirected/directed graph. Default is undirected.

	is_weightedbool, optional, default = False

	whether to compute weighted graph. Default is unweighted.

	is_normalize_samplesbool, optional, default = True

	whether to normalize each sample (i.e., column in the input data).

	is_standardize_otusbool, optional, default = True

	whether to standardize each OTU (i.e., row in the input data)

	Returns

	
	nodes_id (array_like) – list of nodes.

	_A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_pknn_graph(df, 5, metric='braycurtis', T=10, c=0.5, is_weighted=True,
>>> OTU_column='SID')

>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

>>> # save the directed graph in graphml format
>>> save_graph(a, nodes, out_file2, create_using=nx.DiGraph())

References

	1

	Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on World wide web
(pp. 577-586). ACM.

proxi.algorithms.rng module

Computes a (weighted) graph of Neighbors for each data point.
Neighborhoods are restricted to the points at a distance lower than radius.
This is simply a warrper for using sklearng radius_neighbors_graph method.

	
proxi.algorithms.rng.get_rn_graph(data, radius, metric='braycurtis', p=2, metric_params=None, OTU_column=None, is_undirected=True, is_normalize_samples=True, is_standardize_otus=True)

	Computes the (weighted/directed) graph of k-Neighbors for points in data

	Parameters

	
	data (DataFrame) – input data as pandas DataFrame object. Each row is an OTU and each column is a sample

	radius (float) – Radius of neighborhoods.

	metric – The distance metric used to calculate the neighbors within a
given radius for each sample point. The DistanceMetric class
gives a list of available metrics. The default distance is
correlation.

	pint, optional, default = 2

	Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

	metric_paramsdict, optional, default = None

	Additional keyword arguments for the scipy metric function.

	OTU_columnstring, optional, default = None

	Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).
If OTU_column is None, the first column in the dataframe is treated as the OTU_column.

	is_undirectedbool, optional, default = True

	whether to compute undirected/directed graph. Default is undirected.

	is_weightedbool, optional, default = False

	whether to compute weighted graph. Default is unweighted.

	is_normalize_samplesbool, optional, default = True

	whether to normalize each sample (i.e., column in the input data).

	is_standardize_otusbool, optional, default = True

	whether to standardize each OTU (i.e., row in the input data)

	Returns

	
	nodes_id (array_like) – list of nodes.

	_A (scipy sparse matrix) – Adjacency matrix of the constructed graph.

Examples

>>> df = pd.read_csv(in_file)

>>> # construct kNN-graph
>>> nodes, a = get_rn_graph(df, 0.3, metric='braycurtis')

>>> # Note that a is a sparse matrix.
>>> # Use 'todense' to convert a into numpy matrix format required for NetworkX
>>> a = a.todense()
>>> print('Shape of adjacency matris is {}'.format(np.shape(a)))

>>> # save the constructed graph in graphml format
>>> save_graph(a, nodes, out_file)

Module contents

proxi.utils package

Submodules

proxi.utils.distance module

Distance functions for proxi project.

	
proxi.utils.distance.abs_correlation(x, y)

	Compute absolute correlation distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1-|pcc(x,y)|

	
proxi.utils.distance.abs_kendall(x, y)

	Compute absolute Kendall correlation (tau) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1-|tau(x,y)|

	
proxi.utils.distance.abs_spearmann(x, y)

	Compute absolute spearmann correlation (spc) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1-|spc(x,y)|

	
proxi.utils.distance.neg_correlation(x, y)

	Compute negative correlation distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if pcc is positive. Otherwise, the distance is 1+pcc(x,y)

	
proxi.utils.distance.neg_kendall(x, y)

	Compute negative Kendall correlation (tau) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if tau is positive. Otherwise, the distance is 1+tau(x,y)

	
proxi.utils.distance.neg_spearmann(x, y)

	Compute negative spearmann correlation (spc) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if spc is positive. Otherwise, the distance is 1+spc(x,y)

	
proxi.utils.distance.pos_correlation(x, y)

	Compute positive correlation distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if pcc is negative. Otherwise, the distance is 1-pcc(x,y)

	
proxi.utils.distance.pos_kendall(x, y)

	Compute positive Kendall correlation (tau) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if tau is negative. Otherwise, the distance is 1-spc(x,y)

	
proxi.utils.distance.pos_spearmann(x, y)

	Compute positive spearmann correlation (spc) distance between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	1 if spc is negative. Otherwise, the distance is 1-spc(x,y)

proxi.utils.misc module

Miscellaneous Python methods for proxi project.

	
proxi.utils.misc.aggregate_graphs(G, min_num_edges, is_weighted=False)

	Aggregate the adjaceny matrices of graphs defined over the same set of nodes.

	Parameters

	
	G (list of array_like matrices of shape (N,N)) – list of adjacency matrices.

	min_num_edges (int) – min number of edges between two nodes required to keep an edge between them in the aggregated graph.

	is_weighted (bool, optional, default = False) – whether to conmpute a weighted aggregated graph.

	Returns

	
	rVal (agregated graph)

	W (edge weights (None if is_weighted is False))

	
proxi.utils.misc.filter_edges_by_votes(A, G, min_num_votes)

	Aggregate the adjaceny matrices of a list of graphs G and use the aggregated graph to decide which edges
in the base graph A to keep. All graphs are assumed to be defined over the same set of nodes.

	Parameters

	
	A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

	G (list of array_like matrices of shape (N,N)) – list of adjacency matrices.

	min_num_votes (int) – minimum number of edges between two nodes in the aggregated graph required to keep their edge (if exist)
in the base graph.

	Returns

	
	rVal (array_like, shape(N,N)) – adjaceny matrix of the filtered base graph.

	W (array_like, shape(N,N)) – edge wesights associated with rVal graph

	
proxi.utils.misc.save_graph(A, nodes_id, out_file, create_using=None)

	Save the graph in graphml format.

	Parameters

	
	A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

	nodes_id (array-like, shape(N,)) – list of modes id

	out_file (file or string) – File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

	create_using (Networkx Graph object, optional, default is Graph) – User specified Networkx Graph type.
Accepted types are: Undirected Simple Graph

Directed Simple DiGraph
With Self-loops Graph, DiGraph
With Parallel edges MultiGraph, MultiDiGraph

Notes

This implementation, based on networkx write_graphml method, does not support mixed graphs (directed
and unidirected edges together) hyperedges, nested graphs, or ports.

	
proxi.utils.misc.summarize_graph(G)

	Report basic summary statistics of a networkx graph object.

	Parameters

	G (graph) – A networkx graph object

	Returns

	

	Return type

	A dictionary of basic graph properties.

	
proxi.utils.misc.jaccard_graph_similarity(G1, G2)

	Compute Jaccard similarity between two graphs over the same set of nodes.

	Parameters

	
	G1 (graph) – A networkx graph object.

	G2 (graph) – A networkx graph pbject.

	Returns –

	-------s –

	Jaccard similarity between two graphs over the same set of nodes. (Compute) –

	
proxi.utils.misc.get_graph_object(A, nodes_id=None)

	Construct a networkx graph object given an adjaceny matrix and nodes IDs.

	Parameters

	A (array_like, shape(N,N)) – adjaceny matrix of the base graph.

	nodes_idarray-like, shape(N,)

	list of modes id

	Returns

	

	Return type

	A networkx graph object.

	
proxi.utils.misc.get_collable_name(func)

	Return the name of a collable function.

	Parameters

	func (collable function) –

	Returns

	

	Return type

	The name of a collable function.

Notes

str(func) returns <function neg_correlation at 0x1085cdd08>.

proxi.utils.process module

Pre-processing methods for proxi project.

	
proxi.utils.process.filter_OTUs_by_name(data, OTUs_to_keep, OTUs_column)

	Keeps only the OTUs in OTUs_to_keep list.

	Parameters

	
	data (DataFrame) – Input data as a pandas DataFrame object. Each row is an OTU and each column is a sample

	OTUs_to_keep (list) – List of OTUs ID to select from the input dataframe.

	OTU_column (string) – Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).

	Returns

	

	Return type

	A dataframe derived from the input data by keeping only rows with specified OTUs IDs.

	
proxi.utils.process.get_MAD(x)

	MAD is defined as the median of the absolute deviations from the data’s median:

	Parameters

	x (array_like, Shape(N,)) – Input 1-D array.

	Returns

	

	Return type

	The median of the absolute deviations (MAD) of x.

	
proxi.utils.process.get_non_zero_percentage(x)

	The fraction of non-zero values in a 1-D array x.

	Parameters

	x (array_like, Shape(N,)) – Input 1-D array.

	Returns

	

	Return type

	The percentage of non-zero elements in x.

	
proxi.utils.process.get_variance(x)

	Compute the variance of an input vector x.
Variance is the average of the squared deviations from the meanvar = mean(abs(x - x.mean())**2)

	Parameters

	x (array_like, Shape(N,)) – Input 1-D array.

	Returns

	

	Return type

	The variance of x.

	
proxi.utils.process.select_top_OTUs(data, score_function, threshold, OTUs_column)

	Filter OTUs using a scoring function and return top k OTUs or OTUs with scores greater than a threshold score.

	Parameters

	
	data (DataFrame) – Input data as a pandas DataFrame object. Each row is an OTU and each column is a sample

	score_function (collable function) – Unsupervised scoring function (e.g., variance or percentage of non-zeros) of each OTU.

	threshold (float) – if threshold > 1, return top threshold OTUs. Otherwise, return OTUs with score > threshold.

	OTU_column (string) – Name of the DataFrame column that contains the OTUs IDs (i.e., nodes IDs).

	Returns

	

	Return type

	dataframe with selected OTUs

proxi.utils.similarity module

Similarity functions for proxi project.

	
proxi.utils.similarity.abs_Kendall(x, y)

	Compute absolute Kendall correlation similarity between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	|kendalltau(x,y)|

	
proxi.utils.similarity.abs_pcc(x, y)

	Compute absolute Pearson correlation similarity between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	|pcc(x,y)|

	
proxi.utils.similarity.abs_spc(x, y)

	Compute absolute Spearman correlation similarity between two vectors.

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	Returns

	

	Return type

	|spearmanr(x,y)|

	
proxi.utils.similarity.distance_to_similarity(x, y, dist_func)

	Convert the distance functions in scipy.spatial.distance into similarity functions

	Parameters

	
	x (array_like, Shape(N,)) – First input vector.

	y (array_like, Shape(N,)) – Second input vector.

	dist_func (collable) – collabel distance function (e.g., any distance function in scipy.spatial.distance)

	Returns

	

	Return type

	similarity between x and y.

Module contents

Tutorials

Example simple uses and applications of Proxi are provided in the following tutorials

	How to construct a proximity kNN graph?

	How to construct a perturbed kNN graph?

	How to construct an aggregated kNN graph?

	Comparative network analysis of perturbed kNN graphs

How to construct a proximity kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we show how to construct undirected and directed kNN
graphs from an Operational Taxonomic Unit (OUT) table.

An OTU Table is a form of the results that you will get from a
metagenomics taxonomy classification pipeline. In that table, we are
giving (for each sample) the number of sequences in each OTU and the
taxonomy of that OTU. Samples correspond to columns and OTUs correspond
to rows. OTUs taxonomy is the first column (by default) but it could be
any column.

In [1]:

import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.knng import get_knn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

import warnings
warnings.filterwarnings("ignore")

Variables and Parameters settings

In [2]:

Input OTU Table
healthy_file = './data/L6_healthy_train.txt'

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train.graphml'
healthy_directed_graph_file = './graphs/L6_healthy_train_directed.graphml'

Parameters
num_neighbors = 5 # number of nearest neighbors in the kNN graph
dist = abs_correlation # distance function

Load OTU Table and remove useless OTUs

In [3]:

Load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

Delete OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

Construct an undirected kNN graph

In [4]:

Construct kNN-graph
nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)

Save the constructed graph in an edge list format
save_graph(a.todense(), nodes, healthy_graph_file)

Like other graph inference tools, proxi doesn’t support any network
visualization functionality. Here, we used Cytoscape to open our graphml
file and change the network layout to ‘Radial layout’ (see Figure 1).
Moreover, Cytoscape has many tools and plugins that could be used for
downstream analyses of our constructed networks. ! [image: title1] Figure 1:
kNN undirected proximity graph constructed from healthy OTU table using
k = 5.

Construct a directed kNN graph

In [5]:

construct directed kNN-graph
nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist, is_undirected=False)

save the constructed graph in an edge list format
save_graph(a.todense(), nodes, healthy_directed_graph_file, create_using=nx.DiGraph())

Now, let’s visualize the constructed directed network using Cytoscape.
[image: title2] Figure 2: kNN directed proximity graph constructed from healthy
OTU table using k = 5.

Limitation of kNN graphs

A major limitation of the constructed kNN graphs in Figures 1 and 2 is
that the constructed graphs might not be sparse. This limitation could
be addressed using different approaches including:

 Using smaller k.
 Using Perturbed kNN Graphs (see Tutorial 2).
 Using aggregated graphs constructed using different distance functions (see Tutorial 3).

 How to construct a perturbed kNN graph?

How to construct a perturbed kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we show how to construct directed/undirected perturbed
kNN graphs [1]. This algorithm simply uses bootstrapping to perturb the
graph (i.e., obtain several boostrapped graphs and aggregate them). An
important property of the resulting perturbed kNN graphs is that it may
not have the same k for every vertex.

References: [1] Wagaman, A. (2013). Efficient k‐NN graph construction
for graphs on variables. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 6(5), 443-455.

In [1]:

import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.pknng import get_pknn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

import warnings
warnings.filterwarnings("ignore")

Variables and Parameters settings

In [2]:

Input OTU Table
healthy_file = './data/L6_healthy_train.txt'

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train_pknng.graphml' # Output file for pkNN graph
Output file for weighted and directed pkNN graph
healthy_weighted_directed_graph_file = './graphs/L6_healthy_train_weighted_directed_pknng.graphml'

Parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dist = abs_correlation # distance function
T=100 # No of iterations
c=0.6 # control parameter for pknng algorithm

Load OTU Table and remove useless OTUs

In [3]:

load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')
IDs = df['OTU_ID'].values

Construct an undirected pkNN graph

In [4]:

construct kNN-graph
nodes, a,_ = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c)

save the constructed graph in an edge list format
save_graph(a, nodes, healthy_graph_file)

Shape of original data is (161, 200)

Now, you can use Cytocscape to visualize (and analyze) the constructed
graph (See Fig. 1). [image: title1] Figure 1: Perturbed kNN undirected
proximity graph constructed from healthy OTU table using k=5, T=100, and
c=0.6.

Construct a weighted and directed pkNN graph

In [5]:

construct directed kNN-graph
nodes, a, weights = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c, is_undirected=False, is_weighted=True)

save the constructed graph in an edge list format
save_weighted_graph(a, nodes, weights, healthy_weighted_directed_graph_file)

Shape of original data is (161, 200)

Now, use Cytoscape to visualize the graph (See Fig. 2). [image: title2] Figure
2: Perturbed kNN weighted and directed proximity graph constructed from
healthy OTU table using k=5, T=100, and c=0.6.

 How to construct an aggregated kNN graph?

How to construct an aggregated kNN graph?

by Yasser El-Manzalawy yasser@idsrlab.com

In tutorial 1, we showed how to construct a kNN graph. To construct such
graphs, you need to decide on k (number of neighbors) and d (the
dissimilarity metric). Selecting a dissimilarity metric is not trivial
and should be taken into account when interpreting the resulting kNN
graph. Proxi allows the following distance functions to be used:

- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']

- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
 'sqeuclidean', 'yule']

- any callable function (e.g., distance functions in proxi.utils.distance module)

Moreover, Proxi supports any user-defined callable function. For
example, a user might define a new function that is the average or
weighted combination of some of the functions listed above. Finally,
Proxi aggregate_graphs and filter_edges_by_votes methods allow user
to construct different kNN graphs using different distance functions
and/or ks. In what follows, we show how to aggregate three graphs
constructed using k=5 and three different distance functions.

In [1]:

import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.knng import get_knn_graph
from proxi.utils.misc import save_graph, save_weighted_graph, aggregate_graphs, filter_edges_by_votes
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation, abs_spearmann, abs_kendall

import warnings
warnings.filterwarnings("ignore")

In [2]:

Input file(s)
healthy_file = './data/L6_healthy_train.txt' # OTU table

Output file(s)
healthy_graph_file = './graphs/L6_healthy_train_aknng.graphml' # Output file for aggregated pkNN graphs

Graph aggregation parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dists = [abs_correlation, abs_spearmann, abs_kendall] # distance functions
min = 2 # minimum number of edges needed to have an edge in the aggregated graph

Load OTU Table and remove useless OTUs

In [3]:

Load OTU Table
df = pd.read_csv(healthy_file, sep='\t')

Proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

Method 1 for constructing an undirected aggregated kNN graph

In [4]:

graphs = []
Construct kNN-graphs using different distance fucntions
for dist in dists:
 nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)
 graphs.append(a.todense())

aggregated_graph,_ = aggregate_graphs(graphs, min)

Save the constructed graph in an edge list format
save_graph(aggregated_graph, nodes, healthy_graph_file)

Now, we can visualize the graph using Cytoscape (See Fig. 1) [image: title1]
Figure 1: Aggregated kNN graph obtained by aggregating three kNN graphs
consutucted using three distance functions, abs_correlation,
abs_spearmann, and abs_kendall.

An interesting property of the aggregated graph in Fig. 1 is that each
edge is supported by at least 2 distance functions. Alternatively, one
can aggregate the three graphs such that each edge is supported by one
fixed base distance function (e.g., abs_correlation) plus at least one
of the remaining two functions. Therefore, each edge in the resulting
aggregated graph (Fig. 2) is supported by at least two functions such
that one of them is abs_correlation.

Method 2 for constructing an undirected aggregated kNN graph

In [5]:

Specify input/output files and parameters

Output file
healthy_graph_file2 = './graphs/L6_healthy_aknng2.graphml' # Output file for aggregated pkNN graphs

Graph aggregation parameters
base_distance = abs_correlation
dists = [abs_spearmann, abs_kendall] # distance functions
min_votes = 1

In [6]:

graphs = []
Construct kNN-graphs using different distance fucntions
for dist in dists:
 nodes, a = get_knn_graph(df, k=num_neighbors, metric=dist)
 graphs.append(a.todense())

nodes, a = get_knn_graph(df, k=num_neighbors, metric=base_distance)
aggregated_graph,_ = filter_edges_by_votes(a.todense(), graphs, min)

Save the constructed graph in an edge list format
save_graph(aggregated_graph, nodes, healthy_graph_file2)

[image: title2] Figure 2: Sparse base kNN graph (using abs_correlation) and
remaining two graphs are used for filtering out unsupported edges.

It worths to mention that these two methods of aggregating graphs could
also be applied to aggregate the following graphs:

 kNN graphs constructed with different <i>k</i> values
 radius graphs rNN graphs with different <i>radius</i> values</i>
 different perturbed kNN graphs obtained using different T, c, k, or distance parameters

 Comparative network analysis of perturbed kNN graphs

Comparative network analysis of perturbed kNN graphs

by Yasser El-Manzalawy yasser@idsrlab.com

In this tutorial, we construct two perturbed kNN graph for IBD and
healthy controls (respectively) and then present examples of possible
comparative network analysis that could be apply to the two graphs using
Cytoscape. In particular, we compare the two graphs using: - Their
global topological properties obtained using Cytoscape NetworkAnalyzer
tool - Their top modules obtained using MCODE plugins - Their most
varying nodes using DyNet Analyzer plugins and we report the subnetwork
of top most varying 20 nodes (potential IBD biomarkers)

In [1]:

import numpy as np
import pandas as pd
import networkx as nx

from proxi.algorithms.pknng import get_pknn_graph
from proxi.utils.misc import save_graph, save_weighted_graph
from proxi.utils.process import *
from proxi.utils.distance import abs_correlation

import warnings
warnings.filterwarnings("ignore")

Construct an undirected pkNN graph using IBD OTU table

In [2]:

Input file(s)
ibd_file = './data/L6_IBD_train.txt' # OTU table

Ouput file(s)
ibd_graph_file = './graphs/L6_IBD_train_pknng.graphml' # Output file for pkNN graph

Parameters
num_neighbors = 5 # Number of neighbors, k, for kNN graphs
dist = abs_correlation # distance function
T=100 # No of iterations
c=0.6 # control parameter for pknng algorithm

In [3]:

Load OTU Table
df = pd.read_csv(ibd_file, sep='\t')

Proprocess OTU Table by deleting OTUs with less than 5% non-zero values
df = select_top_OTUs(df, get_non_zero_percentage, 0.05, 'OTU_ID')

Construct kNN-graph
nodes, a,_ = get_pknn_graph(df, k=num_neighbors, metric=dist, T=T, c=c)

Save the constructed graph in an edge list format
save_graph(a, nodes, ibd_graph_file)

Shape of original data is (178, 200)

Fig. 1 shows the constructed perturbed kNN graph from IBD samples.
[image: title1] Figure 1: Perturbed kNN undirected proximity graph constructed
from IBD OTU table using k=5, T=100, and c=0.6.

Fig. 2 shows the constructed perturbed kNN graph from healthy control
samples. Note that we don’t need to construct this network since it has
been generated in tutorial 2. [image: title2] Figure 2: Perturbed kNN
undirected proximity graph constructed from healthy OTU table using k=5,
T=100, and c=0.6 (See Example_2).

Now, we can use cytoscape and some of its plugins to compare the two
graphs in Figures 1 and 2.

Analysis of global topological properties

First, we used Cytoscape NetworkAnalyzer tool (1) to get several global
properties of each network. Fig. 3 shows that IBD network has higher
average node degree, clustering coefficient, network centralization, and
number of nodes.

[image: title3] Figure 3: Global network properties for healthy (top) and IBD
(bottom) networks.

Analysis of top first modules

Second, we used MCODE (2) to extract top modules from each network. Fig.
4 compare the top first module from healthy (top) and IBD (bottom)
networks. For healthy network, the top module includes interactions
between 4 different genera of Firmicutes and 2 different genera of
Actionbacteria. For IBD network, the top module includes interactions
among different genara belonging to Actionbacteria, Proteobacteria,
Firmicutes, and Bacteriodetes phylum.

[image: title4] Figure 4: Top module extracted from healthy (top) and IBD
(bottom) networks.

Analysis of most varying nodes

Third, we used DyNet Analyzer (3) to compare the the networks in healthy
and IBD states. The results are visualized in Fig. 5 where: green edges
represent edges present only in healthy network; red edges represent
edges present only in IBD network; and gray edges represent edges
present in both networks. DyNet also associates a rewiring score with
each node that quantifies the amount of change in the identity of the
node interacting neighbors. We then ranked nodes by their DyNet score
and generated a subnetwork of the top 20 nodes (See Fig. 6).
Interestingly, 13 out of 20 nodes form a single connected module. In
this module, two nodes corresponding to corynebacterium genera and
Rhodocyclaceae family have the highest node degrees of 5 and 4
(respectively). [image: title5] Figure 5: DynNet Analyzer. Healthy (green) and
IBD (red).

[image: title6] Figure 6: Subnetwork of top 20 varying nodes determined using
DyNet score.

References:

[1] Assenov, Yassen, et al. “Computing topological parameters of
biological networks.” Bioinformatics 24.2 (2007): 282-284.

[2] Bader, Gary D., and Christopher WV Hogue. “An automated method for
finding molecular complexes in large protein interaction networks.” BMC
bioinformatics 4.1 (2003): 2.

[3] Goenawan, Ivan H., Kenneth Bryan, and David J. Lynn. “DyNet:
visualization and analysis of dynamic molecular interaction networks.”
Bioinformatics 32.17 (2016): 2713-2715.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 proxi	

 	
 	
 proxi.algorithms	

 	
 	
 proxi.algorithms.knng	

 	
 	
 proxi.algorithms.pairwise	

 	
 	
 proxi.algorithms.pknng	

 	
 	
 proxi.algorithms.rng	

 	
 	
 proxi.utils	

 	
 	
 proxi.utils.distance	

 	
 	
 proxi.utils.misc	

 	
 	
 proxi.utils.process	

 	
 	
 proxi.utils.similarity	

 Index

Index

 A
 | C
 | D
 | F
 | G
 | J
 | N
 | P
 | S

A

 	
 	abs_correlation() (in module proxi.utils.distance)

 	abs_kendall() (in module proxi.utils.distance)

 	abs_Kendall() (in module proxi.utils.similarity)

 	
 	abs_pcc() (in module proxi.utils.similarity)

 	abs_spc() (in module proxi.utils.similarity)

 	abs_spearmann() (in module proxi.utils.distance)

 	aggregate_graphs() (in module proxi.utils.misc)

C

 	
 	create_graph_using_pairwise_metric() (in module proxi.algorithms.pairwise)

D

 	
 	distance_to_similarity() (in module proxi.utils.similarity)

F

 	
 	filter_edges_by_votes() (in module proxi.utils.misc)

 	
 	filter_OTUs_by_name() (in module proxi.utils.process)

G

 	
 	get_collable_name() (in module proxi.utils.misc)

 	get_graph_object() (in module proxi.utils.misc)

 	get_knn_graph() (in module proxi.algorithms.knng)

 	get_MAD() (in module proxi.utils.process)

 	
 	get_non_zero_percentage() (in module proxi.utils.process)

 	get_pknn_graph() (in module proxi.algorithms.pknng)

 	get_rn_graph() (in module proxi.algorithms.rng)

 	get_variance() (in module proxi.utils.process)

J

 	
 	jaccard_graph_similarity() (in module proxi.utils.misc)

N

 	
 	neg_correlation() (in module proxi.utils.distance)

 	
 	neg_kendall() (in module proxi.utils.distance)

 	neg_spearmann() (in module proxi.utils.distance)

P

 	
 	pos_correlation() (in module proxi.utils.distance)

 	pos_kendall() (in module proxi.utils.distance)

 	pos_spearmann() (in module proxi.utils.distance)

 	proxi (module)

 	proxi.algorithms (module)

 	proxi.algorithms.knng (module)

 	proxi.algorithms.pairwise (module)

 	
 	proxi.algorithms.pknng (module)

 	proxi.algorithms.rng (module)

 	proxi.utils (module)

 	proxi.utils.distance (module)

 	proxi.utils.misc (module)

 	proxi.utils.process (module)

 	proxi.utils.similarity (module)

S

 	
 	save_graph() (in module proxi.utils.misc)

 	
 	select_top_OTUs() (in module proxi.utils.process)

 	summarize_graph() (in module proxi.utils.misc)

 proxi

proxi

	proxi package
	Subpackages
	proxi.algorithms package
	Submodules

	proxi.algorithms.knng module

	proxi.algorithms.pairwise module

	proxi.algorithms.pknng module

	proxi.algorithms.rng module

	Module contents

	proxi.utils package
	Submodules

	proxi.utils.distance module

	proxi.utils.misc module

	proxi.utils.process module

	proxi.utils.similarity module

	Module contents

	Module contents

_static/file.png

_static/minus.png

_images/T2_Fig1.jpg

_static/up-pressed.png

_images/T2_Fig2.jpg

_static/up.png

_images/T1_Fig1.jpg

_static/plus.png

_images/T1_Fig2.jpg
0/

7

i
o

Jes_Closriceses_Clos

_images/T4_Fig1.jpg

_images/T4_Fig2.jpg

_images/T3_Fig1.jpg

_images/T3_Fig2.jpg

_images/T4_Fig3.jpg
Diffusion Output

Simple Parameters

Node Degree Distribution

in_pknng.graphml

Results Panel

Clustering coefficient
Connected components
e diee

Charact
Avg. number of neighbors

v Ex
Ll Network Statistics of L6_IBD_train_pknng.graphm (undirected)
Avg. Clustering Coefficient Distribution Topological Coefficients >
9349 Number of nodes : 161
b 0018
Network heerogeneiy : 0567
solated nodes : 10

Number of st loops : 0
Multi-edge node pairs : 0
e (sec) : 0.029

0.026
15928 (61%)
905

2.845

Diffusion Output

Node Degree Distribution

Clustering coefficient :

Connected components

Network diameter :

ork radius

Network centralizaton
st paths :
G path length

Avg. number of neighbors

Network Statistics of L6_healthy_train_pknng.graphm! (undirected)

Results Panel

pknng.graphml (undirect

Avg. Clustering Coefficient Distribution Topological Coefficients >
bt Number of nodes : 178
15 Network density : 0.019
1 Network heterogeneity : 0.571
5 Isolated nodes : 8

Number of self-loops : 0
Multi-edge node pairs : 0
Analysis time (sec) : 0.022

.044
26108 (82%)
7141
3303

_images/T4_Fig4.jpg
k__Bacteria;p_ Actinobacteria;c__Cori ri cteriales;f_Coriobacteriaceae;g__Atopobium
k_/Bacteria;p__Firmicutes;c__Bacilli;o__| ;f~Carnobactékiaceae;g__Granulicatella
k__Bacteria;p__Firmicutes;c__Clostridia; ;f__Lachnospiraceae;g’_Oribacterium
k__Bacteria;p__Actinobacteria;c__Actinobacteri ycetales;f_Actinomycetacead:g_|Actinomyces
k__Bacteria;p_ Fiyfnicutes;c_ Bacilli;o, .+ Entergfoccaceae;g_ Vagococcus
k__Bacteria;p__Firmicutes;c__Bacili;o__| ;f__Streptococcaceae;g__Stréptococcus
k__Bacteria;p__Pr¢ teri P eae;g__P
Bacteria;p__Actinobacteria;c__Actinobacteria;o. S orynebacteriaceae;g__Corynebacterium
k__Bacteria;p__Proteobacteria;g ap) o__Rhizobiales;f__Bradyrhi iaceae;g__
k__Bactd p__Firmicutes;c__Bacilli;o__| s;f__Lactobacillaceae;g__Lactghacillu:
__Bactgfia;p_‘Bacteroidetes;c. 0/ Bagteroidales;f_S24-7;9_
k__Bacteria;p__Proteobacteria;c__Betapr __Rhodocyglales;f__Rhadocyclaceae;g__
k__Bacteria;p__Bacteroidetes;c_\ FlaVobacteriia; eriales;f__[Weeksellaceae];g__Clo: erium
k__Bacteria;p. ot c_\Betaproteobact olderis d.)_C

_images/T4_Fig5.jpg

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Installation

 		
 Dependencies

 		
 User installation

 		
 ReadMe

 		
 Install

 		
 Bugs

 		
 License

 		
 proxi package

 		
 Subpackages

 		
 proxi.algorithms package

 		
 proxi.utils package

 		
 Module contents

 		
